On the Asymptotics of the Spectral Density of Radial Dirac Operators with Divergent Potential

نویسندگان

  • Karl Michael Schmidt
  • Michael S. P. Eastham
چکیده

The radial Dirac operator with a potential tending to infinity at infinity and satisfying a mild regularity condition is known to have a purely absolutely continuous spectrum covering the whole real line. Although having two singular end-points in the limit-point case, the operator has a simple spectrum and a generalised Fourier expansion in terms of a single solution. In the present paper, a simple formula for the corresponding spectral density is derived, and it is shown that, under certain conditions on the potential, the spectral function is convex for large values of the spectral parameter. This settles a question considered in earlier work by M. S. P. Eastham and the author. Mathematics Subject Classification (2010). Primary 34L40; Secondary 81Q10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

The spectral geometry of operators of Dirac and Laplace type

Contents 1 Introduction 2 The geometry of operators of Laplace and Dirac type 3 Heat trace asymptotics for closed manifolds 4 Hearing the shape of a drum 5 Heat trace asymptotics of manifolds with boundary 6 Heat trace asymptotics and index theory 7 Heat content asymptotics 8 Heat content with source terms 9 Time dependent phenomena 10 Spectral boundary conditions 11 Operators which are not of ...

متن کامل

Spectral asymptotics for canonical systems

Based on continuity properties of the de Branges correspondence, we develop a new approach to study the high-energy behavior of Weyl–Titchmarsh and spectral functions of 2×2 first order canonical systems. Our results improve several classical results and solve open problems posed by previous authors. Furthermore, they are applied to radial Dirac and radial Schrödinger operators as well as to Kr...

متن کامل

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

Absolutely Continuous Spectrum of Dirac Operators with Square Integrable Potentials

We show that the absolutely continuous part of the spectral function of the one-dimensional Dirac operator on a half-line with a constant mass term and a real, square-integrable potential is strictly increasing throughout the essential spectrum (−∞,−1] ∪ [1,∞). The proof is based on estimates for the transmission coefficient for the full-line scattering problem with a truncated potential and a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017